MED: Physiology and Biophysics Papers

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 13 of 13
  • Item
    Functional remodeling of the contractile smooth muscle cell cortex, a provocative concept, supported by direct visualization of cortical remodeling
    (MDPI AG, 2022-04-26) Suphamungmee, Worawit; Lehman, William; Morgan, Kathleen G.
    Considerable controversy has surrounded the functional anatomy of the cytoskeleton of the contractile vascular smooth muscle cell. Recent studies have suggested a dynamic nature of the cortical cytoskeleton of these cells, but direct proof has been lacking. Here, we review past studies in this area suggesting a plasticity of smooth muscle cells. We also present images testing these suggestions by using the technique of immunoelectron microscopy of metal replicas to directly visualize the cortical actin cytoskeleton of the contractile smooth muscle cell along with interactions by representative cytoskeletal binding proteins. We find the cortical cytoskeletal matrix to be a branched, interconnected network of linear actin bundles. Here, the focal adhesion proteins talin and zyxin were localized with nanometer accuracy. Talin is reported in past studies to span the integrin-cytoplasm distance in fibroblasts and zyxin is known to be an adaptor protein between alpha-actinin and VASP. In response to activation of signal transduction with the alpha-agonist phenylephrine, we found that no movement of talin was detectable but that the zyxin-zyxin spacing was statistically significantly decreased in the smooth muscle cells examined. Contractile smooth muscle is often assumed to have a fixed cytoskeletal structure. Thus, the results included here are important in that they directly support the concept at the electron microscopic level that the focal adhesion of the contractile smooth muscle cell has a dynamic nature and that the protein-protein interfaces showing plasticity are protein-specific.
  • Item
    Crystal structure of the P Pilus rod subunit PapA
    (Public Library of SciencePathogens, 2007-5-18) Verger, Denis; Bullitt, Esther; Hultgren, Scott J.; Waksman, Gabriel
    P pili are important adhesive fibres involved in kidney infection by uropathogenic Escherichia coli strains. P pili are assembled by the conserved chaperone-usher pathway, which involves the PapD chaperone and the PapC usher. During pilus assembly, subunits are incorporated into the growing fiber via the donor-strand exchange (DSE) mechanism, whereby the chaperone's G1 β-strand that complements the incomplete immunoglobulin-fold of each subunit is displaced by the N-terminal extension (Nte) of an incoming subunit. P pili comprise a helical rod, a tip fibrillum, and an adhesin at the distal end. PapA is the rod subunit and is assembled into a superhelical right-handed structure. Here, we have solved the structure of a ternary complex of PapD bound to PapA through donor-strand complementation, itself bound to another PapA subunit through DSE. This structure provides insight into the structural basis of the DSE reaction involving this important pilus subunit. Using gel filtration chromatography and electron microscopy on a number of PapA Nte mutants, we establish that PapA differs in its mode of assembly compared with other Pap subunits, involving a much larger Nte that encompasses not only the DSE region of the Nte but also the region N-terminal to it. Author Summary. Bacterial adhesion to a host is a crucial step that determines the onset of bacterial infection. It is mediated through recognition of a receptor on the host cell surface by a protein called an adhesin displayed on the surface of the bacterium. Many adhesins are displayed at the tip of specialized organelles called pili, some of which are assembled by the ubiquitous chaperone-usher pathway. In this pathway, each pilus subunit is assisted in folding by a chaperone. The resulting chaperone-subunit complex is targeted to a pore located in the outer membrane, called the usher, that serves as assembly platform. There, pilus subunits dissociate from the chaperone and polymerize, resulting in a surface organelle, the pilus, that protrudes out of the usher. Here, we have determined the structure of the major subunit of the P pilus, PapA. The P pilus, produced in uropathogenic Escherichia coli, displays the adhesin PapG responsible for targeting the bacterium to the kidney epithelium. We have determined the structure of PapA either bound to its cognate chaperone, PapD, or bound to another PapA subunit. These structures provide a view of PapA before and after its assembly in the pilus and shed light on the mechanism of PapA assembly.
  • Item
    Molecular Model of the Microvillar Cytoskeleton and Organization of the Brush Border
    (Public Library of Science, 2010-2-24) Brown, Jeffrey W.; McKnight, C. James
    BACKGROUND. Brush border microvilli are ~1-µm long finger-like projections emanating from the apical surfaces of certain, specialized absorptive epithelial cells. A highly symmetric hexagonal array of thousands of these uniformly sized structures form the brush border, which in addition to aiding in nutrient absorption also defends the large surface area against pathogens. Here, we present a molecular model of the protein cytoskeleton responsible for this dramatic cellular morphology. METHODOLOGY/PRINCIPAL FINDINGS. The model is constructed from published crystallographic and microscopic structures reported by several groups over the last 30+ years. Our efforts resulted in a single, unique, self-consistent arrangement of actin, fimbrin, villin, brush border myosin (Myo1A), calmodulin, and brush border spectrin. The central actin core bundle that supports the microvillus is nearly saturated with fimbrin and villin cross-linkers and has a density similar to that found in protein crystals. The proposed model accounts for all major proteinaceous components, reproduces the experimentally determined stoichiometry, and is consistent with the size and morphology of the biological brush border membrane. CONCLUSIONS/SIGNIFICANCE. The model presented here will serve as a structural framework to explain many of the dynamic cellular processes occurring over several time scales, such as protein diffusion, association, and turnover, lipid raft sorting, membrane deformation, cytoskeletal-membrane interactions, and even effacement of the brush border by invading pathogens. In addition, this model provides a structural basis for evaluating the equilibrium processes that result in the uniform size and structure of the highly dynamic microvilli.
  • Item
    The 9-Methyl Group of Retinal Is Essential for Rapid Meta II Decay and Phototransduction Quenching in Red Cones
    (The Rockefeller University Press, 2009-07-27) Estevez, Maureen E.; Kolesnikov, Alexander V.; Ala-Laurila, Petri; Crouch, Rosalie K.; Govardovskii, Victor I.; Cornwall, M. Carter
    Cone photoreceptors of the vertebrate retina terminate their response to light much faster than rod photoreceptors. However, the molecular mechanisms underlying this rapid response termination in cones are poorly understood. The experiments presented here tested two related hypotheses: first, that the rapid decay rate of metarhodopsin (Meta) II in red-sensitive cones depends on interactions between the 9-methyl group of retinal and the opsin part of the pigment molecule, and second, that rapid Meta II decay is critical for rapid recovery from saturation of red-sensitive cones after exposure to bright light. Microspectrophotometric measurements of pigment photolysis, microfluorometric measurements of retinol production, and single-cell electrophysiological recordings of flash responses of salamander cones were performed to test these hypotheses. In all cases, cones were bleached and their visual pigment was regenerated with either 11-cis retinal or with 11-cis 9-demethyl retinal, an analogue of retinal lacking the 9-methyl group. Meta II decay was four to five times slower and subsequent retinol production was three to four times slower in red-sensitive cones lacking the 9-methyl group of retinal. This was accompanied by a significant slowing of the recovery from saturation in cones lacking the 9-methyl group after exposure to bright (>0.1% visual pigment photoactivated) but not dim light. A mathematical model of the turn-off process of phototransduction revealed that the slower recovery of photoresponse can be explained by slower Meta decay of 9-demethyl visual pigment. These results demonstrate that the 9-methyl group of retinal is required for steric chromophore–opsin interactions that favor both the rapid decay of Meta II and the rapid response recovery after exposure to bright light in red-sensitive cones.
  • Item
    Metabolic Constraints on the Recovery of Sensitivity after Visual Pigment Bleaching in Retinal Rods
    (The Rockefeller University Press, 2009-08-17) Miyagishima, Kiyoharu J.; Cornwall, M. Carter; Sampath, Alapakkam P.
    The shutoff of active intermediates in the phototransduction cascade and the reconstitution of the visual pigment play key roles in the recovery of sensitivity after the exposure to bright light in both rod and cone photoreceptors. Physiological evidence from bleached salamander rods suggests this recovery of sensitivity occurs faster at the outer segment base compared with the tip. Microfluorometric measurements of similarly bleached salamander rods demonstrate that the reduction of all-trans retinal to all-trans retinol also occurs more rapidly at the outer segment base than at the tip. The experiments reported here were designed to test the hypothesis that these two phenomena are linked, e.g., that slowed recovery of sensitivity at the tip of outer segments is rate limited by the reduction of all-trans retinal and results from a shortage of cytosolic nicotinamide adenine dinucleotide phosphate (NADPH), the reducing agent for all-trans retinal reduction. Extracellular measurements of membrane current and sensitivity were made from isolated salamander rods under dark-adapted and bleached conditions while intracellular NADPH concentration was varied by dialysis from a micropipette attached to the inner segment. Sensitivity at the base and tip of the outer segment was assessed before and after bleaching. After exposure to a light that photoactivates 50% of the visual pigment, rods were completely insensitive for nearly 10 minutes, after which the base recovered sensitivity and responsiveness with a time constant of ^∼200 seconds, but tip sensitivity recovered more slowly with a time constant of ^∼680 seconds. Dialysis of 5 mM NADPH into the rod promoted an earlier recovery and eliminated the previously observed tip/base difference. Dialysis of 1.66 mM NADPH failed to eliminate the tip/base recovery difference, suggesting the steady-state NADPH concentration in rods is ^∼1 mM. These results indicate the inner segment is the primary source of reducing equivalents after pigment bleaching, with the reduction of all-trans retinal to all-trans retinol playing a key step in the recovery of sensitivity.
  • Item
    Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing
    (2009-8) Yu, Yingpu; Marintchev, Assen; Kolupaeva, Victoria G.; Unbehaun, Anett; Veryasova, Tatyana; Lai, Shao-Chiang; Hong, Peng; Wagner, Gerhard; Hellen, Christopher U.T.; Pestova, Tatyana V.
    The universally conserved eukaryotic initiation factor (eIF), eIF1A, plays multiple roles throughout initiation: it stimulates eIF2/GTP/Met-tRNAiMet attachment to 40S ribosomal subunits, scanning, start codon selection and subunit joining. Its bacterial ortholog IF1 consists of an oligonucleotide/oligosaccharide-binding (OB) domain, whereas eIF1A additionally contains a helical subdomain, N-terminal tail (NTT) and C-terminal tail (CTT). The NTT and CTT both enhance ribosomal recruitment of eIF2/GTP/Met-tRNAiMet, but have opposite effects on the stringency of start codon selection: the CTT increases, whereas the NTT decreases it. Here, we determined the position of eIF1A on the 40S subunit by directed hydroxyl radical cleavage. eIF1A's OB domain binds in the A site, similar to IF1, whereas the helical subdomain contacts the head, forming a bridge over the mRNA channel. The NTT and CTT both thread under Met-tRNAiMet reaching into the P-site. The NTT threads closer to the mRNA channel. In the proposed model, the NTT does not clash with either mRNA or Met-tRNAiMet, consistent with its suggested role in promoting the 'closed' conformation of ribosomal complexes upon start codon recognition. In contrast, eIF1A-CTT appears to interfere with the P-site tRNA-head interaction in the 'closed' complex and is likely ejected from the P-site upon start codon recognition.
  • Item
    High Density Lipoproteins-Based Therapies for Cardiovascular Disease
    (Medknow Publications, 2010-07) Gao, Xuan; Yuan, Shujun
    Atherosclerosis is the leading cause of death in developed countries. High density lipoproteins (HDL) cholesterol level correlates inversely with the risk of cardiovascular diseases. Thus, HDL has obtained lots of interest for drug development. In this review, we summarized the mechanisms for the antiatherogenic function of HDL, current HDL-based drugs in clinical use and the future direction for HDL-based therapy development.
  • Item
    Capzb2 Interacts with β-Tubulin to Regulate Growth Cone Morphology and Neurite Outgrowth
    (Public Library of Science, 2009-10-6) Davis, David A.; Wilson, Meredith H.; Giraud, Jodel; Xie, Zhigang; Tseng, Huang-Chun; England, Cheryl; Herscovitz, Haya; Tsai, Li-Huei; Delalle, Ivana
    An actin regulatory protein unexpectedly also controls microtubule polymerization during the formation and maintenance of cellular outgrowths in neurons. Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either α or β CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the β CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified β-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with β-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with α2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules. Author SummaryNeuronal growth, migration, and survival depend on the regulated formation of cellular outgrowths called neurites. Extension of normal neurites requires coordinated interactions between cytoskeletal networks made up of microfilaments (composed of F-actin) and microtubules (formed by tubulin) in structures called growth cones that form at the tips of growing neurites. Capping protein (CP) is a heterodimer that regulates F-actin assembly in a variety of cell types. Surprisingly, the neuronal CP β subunit, Capzb2, not only regulates F-actin assembly, but also inhibits microtubule polymerization by direct interaction with tubulin. We further show that this function of Capzb2 is required for establishment of the normal shape of growth cones and the appropriate length of neurites. Our data thus reveal an unexpected, dual role for CP in the regulation of both microfilaments and microtubules in neurons.
  • Item
    Evidence for a "Wattle and Daub" Model of the Cyst Wall of Entamoeba
    (Public Library of Science, 2009-7-3) Chatterjee, Anirban; Ghosh, Sudip K.; Jang, Ken; Bullitt, Esther; Moore, Landon; Robbins, Phillips W.; Samuelson, John
    The cyst wall of Entamoeba invadens (Ei), a model for the human pathogen Entamoeba histolytica, is composed of fibrils of chitin and three chitin-binding lectins called Jacob, Jessie3, and chitinase. Here we show chitin, which was detected with wheat germ agglutinin, is made in secretory vesicles prior to its deposition on the surface of encysting Ei. Jacob lectins, which have tandemly arrayed chitin-binding domains (CBDs), and chitinase, which has an N-terminal CBD, were each made early during encystation. These results are consistent with their hypothesized roles in cross-linking chitin fibrils (Jacob lectins) and remodeling the cyst wall (chitinase). Jessie3 lectins likely form the mortar or daub of the cyst wall, because 1) Jessie lectins were made late during encystation; 2) the addition to Jessie lectins to the cyst wall correlated with a marked decrease in the permeability of cysts to nucleic acid stains (DAPI) and actin-binding heptapeptide (phalloidin); and 3) recombinant Jessie lectins, expressed as a maltose-binding proteins in the periplasm of Escherichia coli, caused transformed bacteria to agglutinate in suspension and form a hard pellet that did not dissociate after centrifugation. Jessie3 appeared as linear forms and rosettes by negative staining of secreted recombinant proteins. These findings provide evidence for a "wattle and daub" model of the Entamoeba cyst wall, where the wattle or sticks (chitin fibrils likely cross-linked by Jacob lectins) is constructed prior to the addition of the mortar or daub (Jessie3 lectins). Author SummaryParasitic protists, which are spread by the fecal-oral route, have cyst walls that resist environmental insults (e.g. desiccation, stomach acids, bile, etc.). Entamoeba histolytica, the cause of amebic dysentery and liver abscess, is the only protist characterized to date that has chitin in its cyst wall. We have previously characterized Entamoeba chitin synthases, chitinases, and multivalent chitin-binding lectins called Jacob. Here we present evidence that the Entamoeba Jessie3 lectin contributes to the mortar or daub, which makes the cyst wall impenetrable to small molecules. First, the Jessie3 lectin was made after chitin and Jacob lectins had already been deposited onto the surface of encysting Entamoeba. Second, cysts became impenetrable to small molecules at the same time that Jessie3 was deposited into the wall. Third, recombinant Jessie3 lectins self-aggregated and caused transfected bacteria to agglutinate. These results suggest a "wattle and daub" model of the Ei cyst wall, where the wattle or sticks (chitin fibrils likely cross-linked by Jacob lectins) is constructed prior to the addition of the mortar or daub (Jessie3 lectins).
  • Item
    Giardia Cyst Wall Protein 1 Is a Lectin That Binds to Curled Fibrils of the GalNAc Homopolymer
    (Public Library of Science, 2010-8-19) Chatterjee, Aparajita; Carpentieri, Andrea; Ratner, Daniel M.; Bullitt, Esther; Costello, Catherine E.; Robbins, Phillips W.; Samuelson, John
    The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique β-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWPLRR) and a C-terminal conserved Cys-rich region (CWPCRR). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (~400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (~1.2 µm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1LRR. In contrast, neither MBP alone nor MBP fused to CWP1CRR bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase. Author SummaryWhile the walls of plants and fungi contain numerous sugar homopolymers (cellulose, chitin, and β-1,3-glucans) and dozens of proteins, the cyst wall of Giardia is relatively simple. The Giardia wall contains a unique homopolymer of β-1,3-linked N-acetylgalactosamine (GalNAc) and at least three cyst wall proteins (CWPs), each of which is composed of Leu-rich repeats and a C-terminal Cys-rich region. The three major discoveries here are: 1) Fibrils of the GalNAc homopolymer are curled and form a lattice that is compressed into a narrow plane by bound protein in intact cyst walls. 2) Leu-rich repeats of CWP1 form a novel lectin domain that is specific for fibrils of the GalNAc homopolymer, which can be isolated by methods used to deproteinate fungal walls. 3) A cyst-specific glycohydrolase is able to degrade deproteinated fibrils of the GalNAc homopolymer. We incorporate these findings into a new curled fiber and lectin model of the intact Giardia cyst wall and a protease and glycohydrolase model of excystation.
  • Item
    Mechanisms in Bradykinin Stimulated Arachidonate Release and Synthesis of Prostaglandin and Platelet Activating Factor
    (Hindawi Publishing Corporation, 1982) Ricupero, D.; Taylor, L.; Tlucko, A.; Navarro, J.; Polgar, P.
    Regulatory mechanisms in bradykinin (BK) activated release of arachidonate (ARA) and synthesis of prostaglandin (PG) and platelet activating factor (PAF) were studied in bovine pulmonary artery endothelial cells (BPAEC). A role for GTP binding protein (G-protein) in the binding of BK to the cells was determined. Guanosine 5-O- (thiotriphosphate), (GTPτS), lowered the binding affinity for BK and increased the Kd for the binding from 0.45 to 1.99 nM. The Bmax remained unaltered at 2.25 × 10-11 mole. Exposure of the cells to aluminium fluoride also reduced the affinity for BK. Bradykinin-induced release of ARA proved pertussis toxin (PTX) sensitive, with a maximum sensitivity at 10 ug/ml PTX. GTPτS at 100 μM increased the release of arachidonate. The effect of GTPτS and BK was additive at suboptimal doses of BK up to 0.5 nM but never exceeded the levels of maximal BK stimulation at 50 nM. PTX also inhibited the release of ARA induced by the calcium ionophore, A23187. Phorbol 12-myristate 13-acetate or more commonly known as tetradecanoyl phorbol acetate (TPA) itself had little effect on release by the intact cells. However, at 100 nM it augmented the BK activated release. This was downregulated by overnight exposure to TPA and correlated with down-regulation of protein kinase C (PKC) activity. The down-regulation only affected the augmentation of ARA release by TPA but not the original BK activated release. TPA displayed a similar, but more potent amplification of PAF synthesis in response to both BK or the calcium ionophore A23187. These results taken together point to the participation of G-protein in the binding of BK to BPAEC and its activation of ARA release. Possibly two types of G-protein are involved, one associated with the receptor, the other activated by Ca2+ and perhaps associated with phospholipase A2 (PLA2). Our results further suggest that a separate route of activation, probably also PLA2 related, takes place through a PKC catalysed phosphorylation.
  • Item
    Structure of a Rabbit Muscle Fructose-1,6-Bisphosphate Aldolase A Dimer Variant
    (International Union of Crystallography, 2008-4-19) Sherawat, Manashi; Tolan, Dean R.; Allen, Karen N.
    The X-ray crystallographic structure of a dimer variant of fructose-1,6-bisphosphate aldolase demonstrates a stable oligomer that mirrors half of the native tetramer. The presence of product demonstrates that this is an active form. Fructose-1,6-bisphosphate aldolase (aldolase) is an essential enzyme in glycolysis and gluconeogenesis. In addition to this primary function, aldolase is also known to bind to a variety of other proteins, a property that may allow it to perform 'moonlighting' roles in the cell. Although monomeric and dimeric aldolases possess full catalytic activity, the enzyme occurs as an unusually stable tetramer, suggesting a possible link between the oligomeric state and these noncatalytic cellular roles. Here, the first high-resolution X-ray crystal structure of rabbit muscle D128V aldolase, a dimeric form of aldolase mimicking the clinically important D128G mutation in humans associated with hemolytic anemia, is presented. The structure of the dimer was determined to 1.7 Å resolution with the product DHAP bound in the active site. The turnover of substrate to produce the product ligand demonstrates the retention of catalytic activity by the dimeric aldolase. The D128V mutation causes aldolase to lose intermolecular contacts with the neighboring subunit at one of the two interfaces of the tetramer. The tertiary structure of the dimer does not significantly differ from the structure of half of the tetramer. Analytical ultracentrifugation confirms the occurrence of the enzyme as a dimer in solution. The highly stable structure of aldolase with an independent active site is consistent with a model in which aldolase has evolved as a multimeric scaffold to perform other noncatalytic functions.
  • Item
    Genetic Disruption of Myostatin Reduces the Development of Proatherogenic Dyslipidemia and Atherogenic Lesions In Ldlr Null Mice
    (American Diabetes Association, 2009-6-9) Tu, Powen; Bhasin, Shalender; Hruz, Paul W.; Herbst, Karen L.; Castellani, Lawrence W.; Hua, Ning; Hamilton, James A.; Guo, Wen
    OBJECTIVE: Insulin-resistant states, such as obesity and type 2 diabetes, contribute substantially to accelerated atherogenesis. Null mutations of myostatin (Mstn) are associated with increased muscle mass and decreased fat mass. In this study, we determined whether Mstn disruption could prevent the development of insulin resistance, proatherogenic dyslipidemia, and atherogenesis. RESEARCH DESIGN AND METHODS: C57BL/6 Ldlr−/− mice were cross-bred with C57BL/6 Mstn−/− mice for >10 generations to generate Mstn−/−/Ldlr−/− double-knockout mice. The effects of high-fat/high-cholesterol diet on body composition, plasma lipids, systemic and tissue-specific insulin sensitivity, hepatic steatosis, as well as aortic atheromatous lesion were characterized in Mstn−/−/Ldlr−/− mice in comparison with control Mstn+/+/Ldlr−/− mice. RESULTS: Compared with Mstn+/+/Ldlr−/− controls, Mstn−/−/ Ldlr−/− mice were resistant to diet-induced obesity, and had greatly improved insulin sensitivity, as indicated by 42% higher glucose infusion rate and 90% greater muscle [3H]-2-deoxyglucose uptake during hyperinsulinemic-euglycemic clamp. Mstn−/−/Ldlr−/− mice were protected against diet-induced hepatic steatosis and had 56% higher rate of hepatic fatty acid β-oxidation than controls. Mstn−/−/Ldlr−/− mice also had 36% lower VLDL secretion rate and were protected against diet-induced dyslipidemia, as indicated by 30–60% lower VLDL and LDL cholesterol, free fatty acids, and triglycerides. Magnetic resonance angiography and en face analyses demonstrated 41% reduction in aortic atheromatous lesions in Ldlr−/− mice with Mstn deletion. CONCLUSIONS: Inactivation of Mstn protects against the development of insulin resistance, proatherogenic dyslipidemia, and aortic atherogenesis in Ldlr−/− mice. Myostatin may be a useful target for drug development for prevention and treatment of obesity and its associated type 2 diabetes and atherosclerosis.